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Abstract
Pancreatic cancer is the seventh leading cause of death in developed countries and it 
still has a poor prognosis despite intense research in the last 20 years. Immunotherapy 
is a relatively new strategy in cancer treatment. The aim of immunotherapy is to 
block the immunosuppressive effect of tumoral cells. The PD1/PD-L1 axis has an 
important role in the inhibition of effector T cells and the development of regulatory 
T cells (Tregs). Blocking these checkpoints, and also inhibitory signals, leads 
to apoptosis of Tregs and increased immune response of effector T cells against 
tumoral antigens. Unfortunately, pancreatic cancer is generally considered to be a 
non-immunogenic tumor. Thus PD-1/PD-L1 inhibitors demonstrated poor results 
in pancreatic cancer, excepting some patients with MSI/dMMR (microsatellite 
instability/deficient mismatch repair). Furthermore, pancreatic cancer has a 
particular microenvironment with a strong desmoplastic reaction, increased 
interstitial fluid pressure, hypoxic conditions, and acidic extracellular pH, which 
promote tumorigenesis and progression of the tumor. Mismatch repair deficiency 
(dMMR) is correlated with a high level of mutation-associated neoantigens, most 
recognized by immune cells which could predict a favorable response to anti-PD-1/
PD-L1 therapy. PD-1/PD-L1 molecules could be also found as soluble forms (sPD-
1, sPD-L1). These molecules have a potential role in the prognosis and treatment of 
pancreatic cancer.
Keywords: pancreatic neoplasma, PD-1, PD-L1, immunotherapy, immune 
checkpoint inhibitors

Introduction
Pancreatic cancer is the seventh 

leading cause of death in developed 
countries and represents 6.8% and 7.1% 
of all deaths caused by cancer among 
males and females, respectively.  With 
a life expectancy of 8% at 5 years, the 
prognosis of this cancer has not improved 
over the past 20 years, and incidence and 
mortality rates are very similar [1]. 

Chemotherapy with or without 
radiotherapy and the molecular targeted 
therapy has poor results. Surgery remains 
the only potential curable treatment of 
pancreatic cancer but resection is possible 
only in 15% of cases [2].

With the development of immuno-
oncology, increasing interest was given 
to immune checkpoint inhibitors as 
therapeutic targets but also as prognostic 

factors. Compared to other anticancer 
therapies, immunotherapy has a relatively 
low rate of complications [3]. Among 
immune checkpoints, a very promising 
therapeutic target is the programmed 
cell death protein 1 (PD-1) and the 
programmed cell death ligand (PD-L1) 
[4].

Unfortunately, pancreatic cancer 
is generally considered to be a non-
immunogenic tumor, due to the presence 
of immunosuppressive elements in the 
microenvironment, like regulatory T 
cells (Tregs), myeloid-derived suppressor 
cells (MDSC) and tumor-associated 
macrophages (TAM) [5]. 

However, clinical trials 
demonstrated better results of 
immunotherapy in some patients with 
high level microsatellite instability 
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(MSI-H) tumors [6]. There is an increasing interest in 
soluble checkpoints and many studies are ongoing, trying 
to understand their role in cancer development and how 
they can be used as therapeutic targets. 

The aim of this review is to present the implication of 
PD-1/PD-L1 checkpoint in pancreatic cancer and secondly 
to analyze, based on the available data, the therapeutic 
efficacy of the blockers of this checkpoint.

PD1/PD-L1 checkpoint
Programmed cell death-1 (PD-1, CD279) is a 

member of immunoglobulin superfamily and was identified 
for the first time in 1992 by Tasuku Honjo [6,7]. It is mainly 
expressed on T cells, but also on natural killer T cells, B 
cells, activated monocytes and dendritic cells [8]. 

The expression of PD-1 on naive T cells is induced 
by activation of T cells, playing an important role in 
maintaining immune homeostasis [7]. Moreover, PD-1 
is upregulated by PolyIC and cytokines produced by 
immune cells like IL-2, IL-4, IL-7, IL-10, IL-15, IL-21 
TNF α, IFN γ and growth stem cell factor [4,9]. Voron et 
al. demonstrated that VEGF-A which is produced in the 
tumoral microenvironment increases the expression of PD-
1. Therefore antiangiogenic agents could have an inhibitory 
effect on PD-1 expression [10].

PD-1 has two ligands known as PD-L1 (CD 279) 
and PD-L2 (CD 273) [11].

PD-L1 is the most important ligand of PD-1 and is 
expressed by T cells, B cells, dendritic cells, macrophages 
and tumoral cells [8]. 

PD-L2 is mainly expressed by dendritic cells, 
macrophages, and B cells, but much less in tumoral cells 
[12]. 

It has been demonstrated in some cancers like 
ovarian cancer or melanoma that IFN gamma secreted by 
T cells or NK cells increase PD-L1 secretion at the surface 
of the tumoral cell and is associated with the progression of 
the disease [12,13]. 

The PD1/PD-L1 axis has an important role in 
the inhibition of effector T cells and the development of 
regulatory T cells (Tregs) [8]. Regulatory T cells promote 
immune tolerance. They have important implications 
in controlling allergy, autoimmunity, inflammation, and 
tumors immunity [14,15].

The PD1/PD-L1 checkpoint is mainly involved in 
the regulation of the late immune response in the peripheral 
tissue and less in the early immune response developed 
in lymph nodes, where the main player is the cytotoxic 
T-lymphocyte–associated antigen 4 CTLA-4 [16].

As opposed to chemotherapies and targeted 
therapies, which aim to directly destroy cancer cells, 
immune checkpoint-directed therapies bind lymphocyte 
ligands or receptors to enhance the lymphocyte activation 
and allow a cytotoxic antitumor immune response.

The tumor cells can avoid the host immune attack 
by promoting immunosuppression. A common way to 
promote immunosuppression is by activation of immune 
checkpoints. Blocking these checkpoints was seen as a 
potential strategy in the treatment of cancer (Figure 1). 
Therefore antibodies against receptors involved in immune 
checkpoints were developed, enhancing the immune 
response against tumor cells.

Figure 1. The mechanism of PD1/PD-L1 checkpoint blockade.

Blocking these checkpoints and also the inhibitory 
signals leads to apoptosis of Tregs and increased immune 
response of effector T cells against tumor antigens [17]. 
Tumor cells use this mechanism increasing the expression 
of PD-L1 which binds to PD-1, induce apoptosis or 
exhaustion of T cells and thus the tumor escapes immune 
surveillance [18]. 

Antibodies blocking the PD-1/L1 inhibitory axis 
can unleash activated tumor-reactive T cells to proliferate 
and attack tumor cells and they have been shown in clinical 
trials to induce durable antitumor responses of 10-50% of 
cases, in different types of tumors [19]. Pembrolizumab 
was the first blocking agent of PD-1/PD-L1 checkpoint 
approved in 2014 by the Food and Drug Administration 
(FDA) in the treatment of advanced malignant melanoma 
[20]. 

The PD-1 inhibitors, pembrolizumab and nivolumab 
(anti-PD-1) were recently approved by FDA in the treatment 
of many types of cancers, including  non-small cell lung 
cancer,  urothelial carcinoma, renal cell carcinoma, 
gastrointestinal carcinomas, and metastatic melanoma [21-
24] and since 2018 cemiplimab for cutaneous squamous 
cell carcinoma [25]. The PD-L1 inhibitor Atezolizumab 
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has the FDA approval for the treatment of non-small-cell 
lung carcinoma, breast and urothelial carcinoma [26-28].

The tumoral expression of PD-L1, assessed by 
immunohistochemistry (IHC) staining, has been identified 
as a biomarker associated with a higher chance of tumor 
response in patients treated with anti-PD-L1 antibodies and 
better overall survival in multiple tumor types.

The need for biomarkers of response to 
immunotherapeutic agents relies on the great variability 
of responses to immune checkpoint inhibitors (ICIs) 
and, therefore, the difficulties of patient selection for 
appropriateness of care. One of the most widely used 
biomarkers to predict response to anti-PD-1 is the expression 
of PD-L1 on tumor cells detected by immunohistochemistry 
(IHC). 

Expression of PD-L1 in the tumor may 
be underestimated, when it is evaluated by 
immunohistochemistry, because of different available 
PD-L1 antibody clones with different characteristics 
[29]. Another source of error in the evaluation of the PD-
L1 expression using a biopsy sample is the intratumoral 
heterogeneity or dissimilar expression of PD-L1 between 
some primary tumors and  metastasis [30,31].

PD1/PD-L1 expression in pancreatic cancer
PD-L1 is expressed mainly in tumoral cells and 

rarely in normal cells. The PD1/PD-L1 checkpoint has an 
immunosuppressive role and this could explain why the 
upregulation of PD1/PD-L1 promoted by tumoral cells is 
associated with a bad prognosis. These findings suggest 
that PD1/PD-L1 checkpoint inhibition could enhance 
endogenous antitumoral immunity [32-35]. 

Loos et al. investigated the expression of the B7 
family in pancreatic cancer using reverse transcription PCR 
(RT-PCR) and concluded that only PD-L1 had a prognostic 
value. Therefore the postoperative median survival of 
patients with high PD-L1 expression was only 10 months 
compared with those with low PD-L1 expression, who 
had a median survival of 24 months [36]. In another study 
on 453 patients with pancreatic cancer the expression of 
PD-L1 mRNA was analyzed and the samples positive 
for PD-L1 displayed evidence of lymphocyte exhaustion. 
These patients had shorter disease-free survival and overall 
survival [37].

A meta-analysis demonstrated that high expression 
of PD-L1 in pancreatic cancer was associated with positive 
N stage, advanced T stage and low differentiation, but not 
significant with M stage [38].

In pancreatic cancer, PD-1/PD-L1 inhibitors 
demonstrated no therapeutic effects, excepting those 
patients with MSI/dMMR [39]. Currently, there are 
some trials that determine the efficacy of PD-1/PD-L1 
blockers in combination with chemotherapy, viruses, 
vaccines, radiotherapy (NCT03723915, NCT02648282, 

NCT02546531) [40-42]. A preclinical study in a mouse 
model of pancreatic cancer, demonstrated a better 
antitumoral effect when anti-PD1/PD-L1 was combined 
with gemcitabine [34]. A combination of anti-PD-1 therapy 
and GVAX (cancer vaccine) demonstrated an increased 
overall survival an also an increased infiltration of (IFN)-
gamma-producing CD8+ T cells [43].

But the mechanism of PD-1/PD-L1 pathway is 
not fully understood and further studies remain to explain 
for example why in some cancers like breast cancer and 
Merkel cell carcinoma a high expression of PD-L1 seems 
to have a positive prognosis [44,45].

When evaluating the expression of PD-L1, the 
chosen method is important.  In a meta-analysis, Gao et 
al demonstrated that immunohistochemistry (IHC) in 
pancreatic cancer had a higher rate of detection of PD-
L1 compared with polymerase chain reaction (PCR) 
(54.5% vs. 32.2%) [46]. Another study on non-small cell 
lung cancer revealed a good agreement between PD-L1 
mRNA levels measured by RT-qPCR and IHC [47]. Also, 
the PD-L1 protein expression by IHC analysis has been 
the main predictive biomarker explored for a response to 
immunotherapy.

Several studies reported a poor prognosis in patients 
with increased expression of PD-L1. In a study conducted 
by Tessier-Cloutier et al. patients with resected pancreatic 
tumors with high expression of  PD-L1 (>10%) on 
immunohistochemistry, were associated with poor disease-
specific survival [48]. Similar results were reported by 
Yamaki et al. in a small study using immunostaining with 
fluorescent phosphor-integrated dot (PID) nanoparticles 
[49]. In another study it was demonstrated that patients 
with pancreatic cancer with intense CD8+ TILS and PD-1+ 
TILs (tumor-infiltrating lymphocytes) infiltrate had a better 
prognosis [50]. 

Pancreatic cancer microenvironment
The pancreatic tumor microenvironment includes 

cellular components (fibroblasts, stellate cells, endothelial 
cells, nerve cells, immune cells) and non-cellular components 
(glycoproteins, glycosaminoglycans, proteoglycans, 
enzymes, growth factors). These components seem to have 
a role in the prognosis and efficacy of some therapies [51]. 

From the immune perspective, the pancreatic tumor 
microenvironment is different from many solid tumors. 
The resistance of pancreatic cancer to chemotherapy 
or immunotherapy is mainly due to the particular 
microenvironment of this tumor. 

This microenvironment is lacking effector T 
cells infiltration and is rich in immunosuppressive cells 
like Tregs or myeloid-derived suppressor cell (MDSC) 
[52]. Moreover, pancreatic cancer develops a strong 
desmoplastic reaction which can act as a biophysical 
barrier for CD8+ T cells infiltration but also for therapeutic 
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agents [53]. Besides, increased interstitial fluid pressure, 
hypoxic conditions, and acidic extracellular pH promote 
tumorigenesis and progression of the tumor [54].

A study on KPC mice, which is a model that 
expresses mutant Kras and p53 and develop spontaneous 
pancreatic tumors, revealed leukocyte invasion during 
disease progression. Nevertheless, these leukocytes were 
represented mainly by tumor-associated macrophages, 
myeloid-derived suppressor cells (MDSC) and regulatory 
T cells that have an immunosuppressive role, while 
effector T cells were scarce [55]. This pattern suggests 
immunosuppressive status during the development of 
pancreatic cancer.

Cancer-associated fibroblasts (CAF) induce 
downregulation of antitumoral cells and it was 
demonstrated that targeting CAF is associated with a 
better response to anti-PD-L1 therapy [56,57]. Also, CAF 
express fibroblast activation protein-α (FAP) and in a 
study on KPC mice, it was demonstrated that depletion 
of FAP+ stromal cells improved the anti-PD-L1 therapy 
[56].

All of these aspects of pancreatic cancer 
microenvironment lead to highly immunosuppressive 
microenvironment, and this is one of the reasons 
why immunotherapy has low efficacy in pancreatic 
adenocarcinoma.

Another reason for the low effect of immunotherapy 
in pancreatic cancer is the poor immunogenicity of this 
type of tumor. The lack of immunogenicity of pancreatic 
tumoral microenvironment  is due to poor antigenicity 
[58]. Pancreatic cancer contains an average of 33 to 66 
somatic mutations, fewer compared with other cancers. 
One explanation could be the lack of replication of ductal 
cells of the pancreas, unlike the epithelial cells of the 
colon [59]. 

Biomarkers for PD-L1 system in serum/
plasma

In addition to membranous ligands and receptors 
of the immune regulation system, special attention has 
been given to soluble variants. Soluble forms of PD-1/
PD-L1 (sPD-1/PD-L1) were identified for the first time 
in autoimmune disorders [60]. These soluble immune 
checkpoints are found in the plasma and originate                       
from the expression of mRNA or by cleavage of 
membranous proteins [61]. sPD-L1 could be produced 
and released by tumoral cells and activated mature 
dendritic cells [62]. The sPD-L1 is detectable in the serum 
of healthy humans and its level increases with age. Thus it 
was demonstrated that the level of sPD-L1 was lowest in 
children (3-10 years old) whereas adults (51-70 years old) 
had the highest level [61].

Because the evaluation of PD-L1 status of a 
tumor requires a biopsy which is an invasive procedure, 

and considering the heterogeneity of some tumors like 
pancreatic cancer, soluble checkpoints have been regarded 
as potential surrogates of PD-L1 expression.

sPD1/PD-L1 have an important role in immune 
regulation, being associated with the prognosis of cancer 
and are also potential therapeutic targets. 

In vivo, soluble ligands of the immune regulation 
system could interact with their membrane-bound 
receptors. Also, soluble receptors of the checkpoint 
system could bind to their membrane-bound ligands. 
sPD-1 could block the interaction between PD/L1/CD80, 
PD-L1/PD-1, and PD-L2/PD-1 [63]. Therefore mPD-L1 
or mPD-L2 could bind to sPD-1, instead of mPD-1 
expressed by T cells. As a consequence of this binding, 
mPD-1 at the level of T cell remains unbound, T cell is 
not inactivated and immunosuppression is avoided [61]. 
Regarding sPD-L1, binding to PD-1, and consequently 
generation of an inhibitory signal is under debate [64].

High levels of sPD-L1 have been reported to be 
associated with poor prognosis in some solid cancers [65]. 
Contradictory results were reported in a study conducted 
by Zheng et al. They found that high levels of  sPD-L1 
in patients with gastric cancer are correlated with a high 
grade of differentiation, absence of lymph nodes and better 
prognosis [66]. The reason why high levels of sPD-L1 are 
associated with bad prognosis in some cancers and good 
prognosis in others is still unknown. 

The correlation between sPD-1/sPD-L1 and 
overall survival was contradictory in some studies 
(Table I). Bian et al. found a positive correlation 
between sPD1/PD-L1 and overall survival in patients 
with locally advanced or metastatic pancreatic cancer. In 
this study for the detection of sPD-1 and sPD-L1 plasma 
was preferred instead of serum because the levels of 
soluble markers in plasma were 10 times higher than in 
serum [67]. This could explain the lack of correlation 
between soluble PD-1/PD-L1 and overall survival in 
another study conducted by Kruger et al. In this study the 
serum levels of sPD-1/PD-L1 of patients with advanced 
pancreatic cancer were evaluated. The tumoral expression 
of PD-L1 was not correlated with the level of sPD-L1. 
This observation could suggest the different origins of 
PD-L1. Instead, CRP levels were found to correlate with 
overall survival (OS) [68]. This observation suggests that 
sPD-L1 could be a marker of systemic inflammation in 
advanced pancreatic cancer.

In a study on mice, it has been demonstrated that 
expression of the sPD-1 blocks the interaction between 
PD-1 and PD-L1 and consequently reduces the tumor 
inhibitory effect on T cells and enhances cytotoxicity [70].

The role of sPD-1/PD-L1 is not fully understood, 
and further studies are needed to reveal the mechanisms 
of these molecules and use them as a target in cancer 
therapy.
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Mismatch repair deficiency, microsatellite 
instability, and tumor mutational burden 

Another aspect correlated with the anti-PD-1/PD-
L1 response is the status of mismatch repair (MMR) system 
and microsatellite instability (MSI). The malfunctioning of 
the MMR system, known as mismatch repair deficiency 
(dMMR) leads to a high burden of DNA mutations which 
can lead to the presence of high levels of mutation-
associated neoantigens, most recognized by immune cells.

Kim et al. reported in MLH1/MSH2 negative 
tumors, a PD-L1 expression of 38.9% and in proficient 
MMR (pMMR) a PD-L1 expression of only 15.2 % [71]. 
Le DT et al. using exome sequencing, found in dMMR 
an average of 1782 somatic mutations per tumor and 578 
potential neoantigens while in pMMR tumors found only 
73 mutations and 21 neoantigens. Somatic mutations and 
neoantigens are correlated with a better response to anti-
PD-1/PD-L1 therapy [39].

It was demonstrated that tumors with deficient 
mismatch repair (dMMR) and a high level of MSI (MSI-H) 
have an increased infiltration of CD8+ TILs and this could 
explain the better and more durable response to immune 
checkpoint blockade, particularly to anti-PD1/PD-L1 
therapy [6]. Therefore evaluation of MMR and MSI status 
could identify responders to PD-1/PD-L1 inhibitors. 

In 2017, pembrolizumab was granted accelerated 
FDA approval for patients with unresectable or metastatic 
MSI-H or dMMR solid tumors that have progressed 
following prior treatment and who have no satisfactory 
alternative treatment options. This was the first time that a 
biomarker defined the indication for treatment irrespective 
of tumor location or histology, as a tumor-agnostic 
treatment. 

The NCCN guidelines published in 2021 
recommend  the use of pembrolizumab  as first line therapy 
in low performance status patients, with MSI-H or dMMR 
metastatic pancreatic tumors. Furthermore, pembrolizumab 
could be used as subsequent therapy in patients with 
MSI-H or dMMR metastatic or locally advanced pancreatic 

tumors, regardless performance status [72].
The Keynote 158 study included 22 patients with 

previously treated unresectable or metastatic MSI-H/
dMMR pancreatic cancer. It reported an ORR of 18.2% 
(95% CI 5.2%-40.3%), a median PFS of 2.1 months (95% 
CI 1.9-3.4 months), and a median OS of 4 months [73].

In clinical practice, testing the MMR status could 
be taken into consideration regardless of tumor origin, 
for the administration of immunotherapy to patients with 
dMMR or MSI-H tumors. The National Comprehensive 
Cancer Network (NCCN) guidelines recommend testing of 
MSI or MMR status, on available tumoral tissue, in locally 
advanced and metastatic pancreatic adenocarcinoma. 
Therefore in patients with pancreatic adenocarcinoma with 
MSI-H or dMMR, pembrolizumab should be considered 
as second-line therapy in locally advanced or metastatic 
disease [72,74]. Unfortunately, pancreatic adenocarcinoma 
is very rarely associated with MSI or dMMR, but more 
studies are needed to establish accurately the real 
prevalence of MSI and dMMR in pancreatic cancer. Hu et 
al. found that only 0.8% (7/833) of patients with pancreatic 
cancer had dMMR and all of these patients had Lynch 
syndrome [75]. Also, a rate of 22% of MSI/dMMR was 
reported in pancreatic cancer, but these discordant results 
could be explained by using non-standardized methods of 
MSI/dMMR detection [76].

In addition to MMR and MSI, tumor mutational 
burden (TMB) is a promising predictor for the efficacy of 
anti-PD-1/PD-L1 therapy. TMB represents the total number 
of mutations per coding area of the tumoral genome. In a 
study conducted on 1662 patients of different histologies 
treated with anti CTLA4 or anti-PD-1 therapies, Samstein 
et al. reported that higher TMB was associated with better 
overall survival. Also, TMB seems to be a more accurate 
predictive marker of efficacy of immune checkpoint 
blockade, compared with dMMR/MSI-H or PD-1/PD-L1 
expression [77]. Studies reported that most patients with 
MSI-H had high levels of TMB, but not all patients with 
high TMB levels expressed dMMR/MSI-H [78]. Hence 

Table I. Correlation of serum levels of sPD-1 and sPD-L1 with overall survival in  pancreatic cancer. 

Study Blood 
samples

Correlation with overall 
survival (OS) Follow up (median) 

(months) Overall survival (OS)(months) Cohort study 
(Reference)

sPD-1 sPD-L1

1 41 No correlation No correlation 24.7(95%CI, 19.6-30.0)

9.53(95%CI, 5.06-13.99) for low 
sPDl1/sPD-1(20)

11.93(95%CI, 6.41-17.44) for high 
sPD-L1/sPD-1(21)

Prospective [68]

2 59 Negative 
correlation

Negative 
correlation - 6.9 (95%CI, 4.4-10.19) Prospective [67]

3 60 Negative 
correlation No correlation 11.4 10.3 (95%CI, 8.5-12.1) Prospective [69]
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the evaluation of the status of TMB could bring a benefit 
in patients with cancer, considering that TMB is a good 
predictive marker for the response to immune checkpoint 
blockade and next-generation sequencing is becoming 
more accessible in clinical practice [79].  

In a large cohort study of 9887 samples from 35 
distinct tumor types, PD-L1 and TMB were reported to be 
relatively independent predictive markers and both could 
bring data about the probability of response to immune 
checkpoint inhibition [80]. Therefore the evaluation of 
TMB in addition to PD-L1 expression, may be a solution 
for a better selection of patients that could respond to 
immune checkpoint blockade.

BRCA 1 and BRCA 2 are associated with an 
increased risk mainly of ovarian and breast cancer [81], 
but also pancreatic cancer [82]. In patients with pancreatic 
cancer, the  prevalence of BRCA mutations is 4 to 7% 
[83]. Recently, in the POLO trial, it was demonstrated 
that patients with pancreatic cancer which bear mutations 
of BRCA1 or BRCA2 are sensitive to poly (adenosine 
diphosphate-ribose) polymerase (PARP) inhibitors like 
olaparib [83].

Future perspectives
Immunotherapy is a relatively new strategy in cancer 

treatment. Despite these recent breakthroughs in developing 
checkpoint inhibitors to treat advanced melanoma and 
other cancers, a significant number of patients do not 
respond to PD-1/PD-L1 blockade, or experience disease 
progression after an initial response. Therapeutic failure  
could be explained by a lack of sufficient immune activation 
against cancer or an overwhelming suppressive tumor 
microenvironment that is hard to overcome. As it was 
mentioned above, immunotherapy alone has no efficacy in 
pancreatic cancer, excepting patients with MSI-H/dMMR 
tumors. Some results were stated when immunotherapy 
was combined with other therapies. This could be a key to 
exploit the benefits of immunotherapy and further research 
should be conducted on this. Also, chemotherapy and 
radiotherapy induce tumoral cell death and further release 
of tumoral antigens which leads to T cell activation in the 
tumoral microenvironment where checkpoint inhibitors 
could maintain intratumoral immunogenicity [84]. 

Studies on soluble PD-1/PD-L1 are scarce and 
further studies are needed to better understand their roles 
and if these markers can be used as target therapies or set as 
an indication for specific therapy.

Many studies are developing, trying to target 
the tumoral microenvironment, but for now, they have 
disappointing results [85]. 

According to the last studies, microbiota seems to be 
involved in immunologic development and carcinogenesis 
of gastrointestinal cancers including pancreatic cancer 
[86,87]. Therefore, modulation of the microbiota is a 

potential strategy to enhance the efficacy of immunotherapy 
[88,89]. A good reason in favor of further development of 
immunotherapy is the relatively low rate of complications 
compared with other cancer treatments [3,90]. 

Nevertheless, until an effective treatment for 
pancreatic cancer will be available, early diagnosis is the 
best strategy. Screening for pancreatic cancer is difficult but 
at least high-risk patients should be regularly evaluated. 

Conclusions
Pancreatic cancer is one of the most lethal 

cancers and at the same time one of the most resistant 
to chemotherapy and immunotherapy, especially due to 
the particular tumoral microenvironment. Many trials 
evaluated the efficacy of immunotherapy in pancreatic 
cancer, especially PD-1/PD-L1 inhibitors but some real 
benefits were proven only in patients with MSI or dMMR. 
Unfortunately, pancreatic adenocarcinoma is very rarely 
associated with MSI or dMMR, and this association could 
be in the context of Lynch syndrome.

PD-L1 protein expression by IHC analysis has been 
the main predictive biomarker explored for a response to 
immunotherapy. Comparative studies of PD-L1 detection 
methods and antibodies will be important for guiding the 
use of immunotherapy for patient care and the development 
of immunotherapy biomarker guidelines. 

In order to increase its effectiveness, immunotherapy 
was associated in some studies with chemotherapy, 
radiotherapy, viruses or vaccines, but the results are still 
poor. Also, special attention has been given to soluble 
variants of PD-1/PD-L1 and the immunomodulatory role 
of intestinal microbiota.
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