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Untargeted serum metabolomics reveals
metabolic signatures distinguishing basal cell
carcinoma risk groups: an exploratory analysis
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Abstract

Background and aim. Basal cell carcinoma (BCC) is the most common skin
cancer, yet reliable non-invasive markers for distinguishing low-risk (LR) from
high-risk (HR) lesions are still lacking. Serum metabolomics provides a promising
approach for capturing systemic biochemical changes associated with tumor
behavior. In this study, we conducted untargeted serum metabolomic profiling
using high-performance liquid chromatography coupled with mass spectrometry
in 48 patients with histologically confirmed BCC.

Methods. The cohort included 38 HR and 10 LR lesions. After quality filtering,
99 polar and 54 lipophilic metabolites were retained for analysis. Using a
significance threshold of P < 0.01 and absolute fold change > 1.2, 10 metabolites
differed between HR and LR BCC.

Napoca, Romania L . . .
Results. Principal component analysis showed partial separation between

the two groups driven by metabolites including dihydroxybutyric acid,
glucosylsphingosine, androsterone, and several lysophosphatidylcholines. A
linear discriminant model based on the first 4 principal components achieved an
AUC of 0.88, corresponding to a sensitivity of 89% and a specificity of 40% for
identifying HR lesions. Enrichment analysis revealed representation of multiple
chemical classes, including carboxylic acids, steroids, glycerophospholipids,
indoles, diazines, and organooxygen compounds. Several metabolites varied
significantly by anatomical location and tumor size, while histologic subtype
showed no meaningful influence.
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Conclusions. These findings provide initial evidence that serum metabolomics
can detect metabolic differences between LR and HR BCC and may serve as a
basis for developing non-invasive biomarkers to improve BCC risk stratification
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and cosmetics [3,4]. Consequently, both

US and European guidelines propose
a risk stratification approach regarding
recurrence [1,5]. This  assessment
relies on clinical, dermatoscopic,
and histological evaluations prior to
therapeutic decision-making. Non-invasive
options, such as cryotherapy, curettage,
electrodessication, photodynamic therapy,
or topical treatments with imiquimod or
5-fluorouracil, are generally reserved for
low risk (LR) lesions. Conversely, high

Background and aims

Basal cell carcinoma (BCC) is
the most frequent cutaneous malignancy,
accounting for 75% of newly diagnosed
skin cancers. Its incidence is currently
rising by 1-3% annually in the United
States and Europe [1].

Despite alow mortality rate (<1%)
[2], the tumor’s predilection for the
head and neck mandates that treatment
goals prioritize not only cure but also
the maximal preservation of function
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risk (HR) lesions require surgical excision with 4-5 mm
margins or Mohs micrographic surgery.

Risk classification of BCC remains challenging
because aggressive histologic subtypes can present with
deceptively benign clinical features, biopsy sampling may
miss focal areas of HR pathology, and both dermatoscopy
and imaging have inherent diagnostic limitations. Moreover,
current classification systems are not fully harmonized,
and significant interobserver variability across clinical,
dermatoscopic, and histopathologic assessments further
complicates accurate risk stratification [6]. Patient-specific
factors such as immunosuppression, prior treatments, and
lesion recurrence add an additional layer of complexity [7].
No molecular biomarker is currently available to reliably
assess recurrence risk or disease aggressiveness.

These diagnostic constraints highlight the need for
objective, molecularly driven markers to refine existing
risk-stratification approaches. In this context, serum
metabolomics offers a non-invasive window into tumor-
related biochemical alterations and represents a promising
strategy to uncover molecular signatures associated with
BCC recurrence risk [8].

However, the evidence characterizing the blood
metabolomic profile of BCC remains scarce. Indeed,
most serum metabolomics studies to date have focused
on melanoma [9-13], and the current metabolomics
literature in BCC is limited and relies largely on indirect,
experimental, or tissue-based approaches. One recent study
employed MALDI mass spectrometry imaging combined
with machine learning and reported high diagnostic
accuracy for BCC; however, the analysis was conducted
on a small number of experimentally induced tumors in a
murine model and was restricted to tissue-level metabolic
profiling, thereby limiting its translational relevance for
non-invasive risk stratification in humans [14].

Similarly, available human studies remain
constrained by tissue-based designs and small sample
sizes. Electroporation-based biopsy coupled with high-
throughput lipidomics has been shown to differentiate
BCC from healthy skin and squamous cell carcinoma, but
this approach requires direct tissue sampling, includes a
limited number of patients, and does not assess circulating
metabolites, precluding its application to non-invasive risk
stratification or systemic biomarker discovery [15].

Large-scale human data addressing -circulating
metabolites in BCC are also limited by indirect inference
frameworks. A recent Mendelian randomization study
explored genetic associations between circulating
metabolites, immune parameters, and skin cancer risk;
however, the analysis relied on genetically inferred
metabolite traits derived from GWAS data rather than direct
experimental metabolomic profiling of patient samples,
and it did not enable discrimination between HR and LR
BCC lesions at the individual level [16].

Collectively, these studies highlight the paucity of

data directly addressing serum metabolomic differences
between clinically defined LR and HR BCC. This gap
underscores the need for exploratory, proof-of-concept
investigations based on direct serum metabolomic profiling
to evaluate whether circulating metabolic signatures reflect
BCC risk stratification. To address this gap, we conducted
an untargeted analysis using high-performance liquid
chromatography coupled with mass spectrometry (LC-MS).

Our study pursued two main objectives. First, we
aimed to determine whether LR and HR BCC exhibit
distinct circulating metabolic profiles. Second, once
metabolic differences were identified, we examined which
factors were most closely associated with these differences,
including tumor size, anatomical site and histologic
subtype.

By uncovering serum metabolomic profiles that
differentiate LR and HR BCC, this exploratory study
provides objective preliminary insights. These findings
lay the groundwork for more accurate risk stratification
and may ultimately support more individualized treatment
decisions.

Methods

Consecutive participants were recruited from the
Department of Dermatology at the County Emergency
Clinical Hospital Cluj-Napoca in Cluj-Napoca, Romania,
between February 2023 and September 2024. Individuals
were eligible if a clinical and dermatoscopic assessment
suggested the presence of skin cancer. Patients with a
prior history of malignancy were excluded from the study.
All examinations were performed by dermatologists with
more than ten years of clinical experience. Peripheral
blood was collected from each participant, and serum
was prepared following the laboratory’s standard
procedures. Ethical approval was obtained from the Iuliu
Hatieganu University of Medicine and Pharmacy Cluj-
Napoca (approval no. 44/31.03.2023) and the County
Emergency Clinical Hospital Cluj-Napoca (approval no.
31186/5.07.2023). Written informed consent was collected
from all participants. Excised tumors were processed as
formalin-fixed, paraffin-embedded tissues and evaluated
histologically with hematoxylin and eosin staining. A
pathologist documented tumor size, histologic subtype,
and grade when applicable, and only lesions confirmed as
BCC were included in the subsequent analysis. The risk
classification was based on the NCCN guidelines [5].

Metabolites were extracted by mixing 0.25 mL of
serum with 1 mL of a methanol-acetonitrile solution (2:1,
v/v). After vortexing for 30 seconds, samples were stored at
—20 °C for 24 hours, then thawed and centrifuged at 12,500
g for 10 minutes. Supernatants were filtered through 0.2-
um nylon membranes and transferred into autosampler
vials for analysis.

Metabolomic profiling was performed using a
quadrupole time-of-flight mass spectrometer (MaXis
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Impact) coupled to a liquid chromatography system
(UltiMate 3000). Chromatographic separation employed
a reversed-phase C18 column (Acclaim UPLC C18). The
mobile phases consisted of 0.1% formic acid in water (A)
and 0.1% formic acid in acetonitrile (B). A 15-minute
gradient was applied at a flow rate of 0.8 mL/min, with
a 5-pL injection volume and a column temperature of 28
°C. The gradient progressed from 90% to 85% A (0-3
min), 85% to 50% A (3—6 min), 50% to 30% A (6—8 min),
30% to 10% A (8—12 min), followed by re-equilibration to
90% A. Mass spectra were collected between 50 and 1000
Da. The internal standard was a 0.5 mg/mL doxorubicin
hydrochloride solution (parent ion m/z= 544.1360). In
parallel QC samples were analyzed for reproducibility. All
measurements were done in duplicate. Mass spectra were
collected from m/z 50 to 1000, enabling detection of both
polar (<380 Da) and hydrophobic (>380 Da) metabolites.
Nebulizer pressure was set to 2.8 bar, with a drying gas
flow of 12 L/min at 300 °C. Sodium formate was used for
calibration prior to each run.

Raw LC-MS data were processed with DataAnalysis
v4.2, including chromatogram alignment, conversion to
base-peak chromatograms, and feature detection using the
Find Molecular Features algorithm. Features with retention
times below 0.3 minutes, signal intensities under 3000
units, signal-to-noise ratios below 3, or m/z values above
600 Da were excluded. Alignment of m/z features was
performed using the NEAPOLIS platform (https://www.
bioinformatics.org/bioinfo-af-cnt/NEAPOLIS/).

Statistical analysis was carried out in R (version
4.4.2) with the objective of identifying a concise panel
of metabolites associated with HR lesions, thereby
generating hypotheses regarding the potential feasibility
of metabolomic approaches for risk stratification in
BCC. Samples were included only if at least 70% of
metabolite intensities were present, and metabolites were
retained if missing values did not exceed 30% across
samples. Intensities were log-transformed and autoscaled.
Metabolites differing between HR and LR samples were
identified using two-tailed Student’s t-tests. Significance
required P < 0.01 and an absolute fold change greater
than 1.2. Given the exploratory nature of the analysis, no
adjustment for multiple testing was applied, as the goal was
to rank metabolites according to their ability to discriminate
between HR and LR lesions. The numerical imbalance
between groups was not corrected for, as it arose from the
consecutive inclusion of patients. Global variability was
examined via principal component analysis (PCA) using
prcomp() function from the stats v. 4.4.2 package, after
median imputation of missing values and standardization
to unit variance.

To evaluate discriminative performance, linear
discriminant analysis was applied to PCA scores derived
from significant metabolites. Linear discriminant analysis
was performed with the MASS package (version 7.3-

61), using the smallest number of principal components
accounting for at least 80% of cumulative variance.
Posterior probabilities generated by the model were used
to assign HR vs LR classifications. Given the limited
sample size, leave-one-out cross-validation was used, as
external validation in an independent hold-out cohort was
not feasible. Confusion matrices were derived from cross-
validated predictions, and ROC curves with corresponding
AUC values were computed using the pROC package
(version 1.19.0.1). To generate hypotheses concerning
the molecular origin of the observed metabolomic
changes, pathway enrichment analysis was carried out in
MetaboAnalyst 6.0 using the SMPDB reference library.

Results

Out of the 48 patients included in the study, 38
lesions were HR BCC, while 10 proved to be LR BCC.
The subgroup analysis of tumor dimension, location and
histologic type is depicted in Table I.

Table 1. Distribution of patients classified as high-risk and low-
risk basal cell carcinoma (BCC) according to NCCN criteria with
subgroup analysis of risk considering tumor dimension, tumor
location and histologic subtype.

| | Lowrisk BCC | High risk BCC

NCCN guideline 10 38
Dimension (>2cm) 9 38
Location 12 35
Histology 40 8

In regard to the first aim, we were interested in
delineating the metabolomic profile of HR BCC. After
retaining only metabolites detected in at least 70% of
samples, the dataset comprised 99 polar and 54 lipophilic
compounds (Figure 1A). Using the defined significance
thresholds (Student’s t-test P < 0.01 and absolute fold
change > 1.2), the volcano plot revealed 10 metabolites that
differed significantly between HR and LR BCC (Figure 1B
and table II).

Table I1. The 10 discriminatory metabolites grouped as polar or
lipophilic compounds.

Dihydroxybutyric acid Polar

Tetradecanoylcarnitine Polar

Adenosine monophosphate Polar

Androsterone Lipophilic
Deoxycholic acid Lipophilic
Glucosylsphingosine Lipophilic
Lysophosphatidylcholine (18:3) Lipophilic
Lysophosphatidylcholine (18:1) Lipophilic
Lysophosphatidylcholine (20:4) Lipophilic
Lysophosphatidylcholine (22:5) Lipophilic
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Next, PCA was performed using only the
metabolites that were significantly different in the
volcano plot. The PCA score plot in figure 1C shows the
distribution of samples along principal component 2 and
3. The two risk groups occupy overlapping but partially

positive loadings for dihydroxybutyric acid and negative
loadings for glucosylsphingosine. Principal component
3 was mainly shaped by positive contributions from
androsterone and lysophosphatidylcholine (20:4), whereas
lysophosphatidylcholine (22:5), lysophosphatidylcholine

distinct areas of the plot. The separation was primarily = (18:3), and adenosine monophosphate contributed
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Figure 1. Serum metabolomic differences between low-risk and high-risk basal cell carcinoma.
(A) Heatmap of polar metabolites and lipid species across low-risk and high-risk samples, shown as log-transformed intensities with

hierarchical clustering of both metabolites and samples.
(B) Volcano plot displaying fold changes and significance values
threshold are highlighted.

for all detected metabolites. Features that passed the significance

(C) PCA score plot based on significantly different metabolites, showing sample distribution along PC2 and PC3.
(D) Loading plot indicating the metabolites that contributed most to principal component 2 (PC2) and PC3.
(E) ROC curve for the principal component analysis coupled with linear discriminant analysis (PCA-LDA) classification model

constructed from the significantly different metabolites.

(F) Confusion matrix for the PCA-LDA model, showing predicted and true classifications for low-risk and high-risk cases.
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We used the first four principal components, which
together accounted for more than 80% of the total variance in
the dataset, as input for a linear discriminant analysis model.
The model yielded an AUC of 0.88 (Figure 1E), while the
confusion matrix corresponded to a sensitivity of 89% and a
specificity of 40% in detecting HR BCC (Figure 1F).

After defining the metabolic differences between LR
and HR lesions, we proceeded to perform an exploratory
pathway enrichment analysis and to determine whether
clinical variables such as tumor size, anatomical location,
or histologic subtype contributed to the observed patterns.
The enrichment analysis using the SMPDB library indicated
that the selected metabolites span several chemical

A

classes, including carboxylic acids and their derivatives,
steroids and steroid derivatives, glycerophospholipids,
indole compounds, diazines, and various organooxygen
metabolites (Figure 1A, B).

To determine which clinical features contributed
to the observed metabolic differences, we next evaluated
the relationship between the discriminant metabolites and
tumor size, anatomical location, and histologic subtype.
No meaningful differences were observed across histologic
risk classes (Figure 2C). In contrast, several metabolites
differed significantly between lesions arising in HR and
LR anatomical sites. Tumor size also showed a notable
influence, indicating that lesion dimension is associated

with distinct metabolic profiles.
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Figure 2. Functional classification of differential metabolites and their associations with tumor features.
(A) Enrichment analysis of the chemical classes represented by the differential metabolites.

(B) Proportional distribution of these metabolites across major chemical categories.
(C) Boxplots showing metabolite levels in relation to histologic subtype, anatomical location and tumor dimension. P-values for each

comparison are shown above the corresponding panels.
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Discussion

This study addressed two main objectives. First,
we evaluated whether LR and HR BCC differ in their
circulating metabolic profiles. Second, after identifying
discriminant metabolites, we examined their biological
relevance and assessed whether tumor size, anatomical
location, or histologic subtype contributed to the observed
variation.

Regarding the first objective, the results
demonstrate clear metabolic differences between LR and
HR BCC. After filtering, the dataset contained 99 polar and
54 lipophilic metabolites, of which 10 met the predefined
significance thresholds (P < 0.01 and absolute fold change
> 1.2). These metabolites span multiple biochemical
classes, indicating broad metabolic differences between
LR and HR BCC rather than a single pathway shift. The
linear discriminant analysis model based on the first 4
principal components reached an AUC of 0.88, with a
sensitivity of 89% and a specificity of 40% for detecting
HR BCC, supporting the discriminatory potential of these
metabolic features.

For the second objective, we used enrichment
analysis to explore the origin of the observed metabolomic
differences between HR and LR BCC. The results
showed that the discriminant metabolites represented
several chemical categories, including carboxylic acids,
steroids, glycerophospholipids, indoles, diazines, and
organooxygen compounds. The relatively limited number
of samples and metabolites did not allow for an in-depth
analysis of metabolic pathways potentially deregulated in
HR BCC, and therefore, mechanistic links between the
identified metabolites and tumor aggressiveness remain
speculative.

When metabolite intensities were examined across
clinical variables, histologic risk classes showed no
meaningful differences. In contrast, several metabolites
differed significantly between lesions arising in LR versus
HR anatomical sites. Tumor size also contributed to
metabolic variation, with multiple metabolites showing
distinct patterns between smaller and larger tumors. These
findings suggest that metabolic differences between LR
and HR BCC reflect both intrinsic tumor characteristics
and clinically relevant contextual factors such as location
and dimension.

To date, most serum metabolomics research in skin
cancer has focused on melanoma rather than BCC. Several
studies have evaluated metabolite-based diagnostic
signatures in melanoma, including large-scale analyses
that identified amino sugar-related metabolites, lipid
species, and carnitine derivatives as robust discriminators
between melanoma and healthy controls [9,10,12,13].
Beyond diagnosis, a recent metabolomics study in
metastatic melanoma demonstrated that baseline serum
metabolites can stratify patients according to overall
survival under immune checkpoint inhibitor therapy,

highlighting the potential of metabolomics for prognostic
assessment [11]. In contrast, data on metabolomics-
based risk stratification in BCC are extremely limited,
and no prior study has specifically examined circulating
metabolic profiles in relation to LR versus HR BCC.

Notably, several metabolite classes identified in
our cohort, including lysophosphatidylcholines, steroid-
related compounds, and lipid-associated metabolites,
overlap with metabolic patterns previously described in
tissue-based analyses of BCC [14,15]. This convergence
suggests that at least part of the tumor-associated
metabolic reprogramming is reflected systemically, rather
than being restricted to the local tumor microenvironment.
At the same time, the detection of circulating metabolites
such as dihydroxybutyric acid and glucosylsphingosine
highlights additional metabolic alterations that would not
be captured by tissue-restricted approaches.

Compared with prior work relying on MALDI
imaging or electroporation-based lipidomics, which
primarily characterize local biochemical changes within
tumor tissue, the present study provides complementary
information by capturing systemic metabolic differences
associated with clinical risk stratification [14,15].
Furthermore, unlike genetic or Mendelian randomization
studies, which infer metabolic involvement indirectly
[16], our approach directly measures circulating
metabolites and therefore reflects real-time biochemical
alterations associated with tumor behavior. Therefore,
our findings expand current knowledge by providing
evidence that serum metabolomics may capture clinically
relevant risk distinctions in BCC. Several limitations
should be considered when interpreting the findings of
this study. First, the sample size was modest, particularly
for the LR group, which included fewer cases than the
HR group. This imbalance may have reduced the power
to detect subtler metabolic differences and contributed to
the partial overlap observed in PCA. Second, the study
was conducted at a single clinical center, which may limit
the generalizability of the metabolic patterns identified.
External validation in independent cohorts with broader
demographic and geographic diversity will be necessary
to confirm the robustness of the findings. Third, although
the untargeted LC-MS approach enabled broad detection
of serum metabolites, it did not provide absolute
quantification, and certain metabolite classes, such as
highly hydrophobic lipids or low-abundance compounds,
may be underrepresented. Finally, mechanistic
associations between the identified metabolites and BCC
aggressiveness remain speculative, as the relatively
small number of patients and metabolites did not permit
a detailed pathway enrichment analysis. Despite these
constraints, the study offers initial evidence that serum
metabolomics can differentiate LR from HR BCC and
supports further exploration of metabolic markers for risk
stratification in BCC.
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Conclusion

In summary, this study shows that LR and HR BCC
have distinct circulating metabolic profiles detectable by
untargeted serum LC-MS. We identified 10 metabolites
that differed between the two groups, and multivariate
modeling produced an AUC of 0.88, indicating that serum
metabolites reflect clinically relevant differences in BCC
risk. The discriminant metabolites belonged to multiple
biochemical classes, and their variation was influenced
mainly by anatomical site and tumor size rather than
histologic subtype. Although validation in larger and more
diverse cohorts is required, these results provide initial
evidence that serum metabolomics may complement
current clinical criteria and support more accurate risk
stratification in BCC.
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