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Abstract
Background and aim. Basal cell carcinoma (BCC) is the most common skin 
cancer, yet reliable non-invasive markers for distinguishing low-risk (LR) from 
high-risk (HR) lesions are still lacking. Serum metabolomics provides a promising 
approach for capturing systemic biochemical changes associated with tumor 
behavior. In this study, we conducted untargeted serum metabolomic profiling 
using high-performance liquid chromatography coupled with mass spectrometry 
in 48 patients with histologically confirmed BCC. 
Methods. The cohort included 38 HR and 10 LR lesions. After quality filtering, 
99 polar and 54 lipophilic metabolites were retained for analysis. Using a 
significance threshold of P < 0.01 and absolute fold change > 1.2, 10 metabolites 
differed between HR and LR BCC. 
Results. Principal component analysis showed partial separation between 
the two groups driven by metabolites including dihydroxybutyric acid, 
glucosylsphingosine, androsterone, and several lysophosphatidylcholines. A 
linear discriminant model based on the first 4 principal components achieved an 
AUC of 0.88, corresponding to a sensitivity of 89% and a specificity of 40% for 
identifying HR lesions. Enrichment analysis revealed representation of multiple 
chemical classes, including carboxylic acids, steroids, glycerophospholipids, 
indoles, diazines, and organooxygen compounds. Several metabolites varied 
significantly by anatomical location and tumor size, while histologic subtype 
showed no meaningful influence. 
Conclusions. These findings provide initial evidence that serum metabolomics 
can detect metabolic differences between LR and HR BCC and may serve as a 
basis for developing non-invasive biomarkers to improve BCC risk stratification
Keywords: metabolomics, skin cancer, cutaneous malignancies, basal cell 
carcinoma 

Background and aims 
Basal cell carcinoma (BCC) is 

the most frequent cutaneous malignancy, 
accounting for 75% of newly diagnosed 
skin cancers. Its incidence is currently 
rising by 1–3% annually in the United 
States and Europe [1].

Despite a low mortality rate (<1%) 
[2], the tumor’s predilection for the 
head and neck mandates that treatment 
goals prioritize not only cure but also 
the maximal preservation of function 

and cosmetics [3,4]. Consequently, both 
US and European guidelines propose 
a risk stratification approach regarding 
recurrence [1,5]. This assessment 
relies on clinical, dermatoscopic, 
and histological evaluations prior to 
therapeutic decision-making. Non-invasive 
options, such as cryotherapy, curettage, 
electrodessication, photodynamic therapy, 
or topical treatments with imiquimod or 
5-fluorouracil, are generally reserved for
low risk (LR) lesions. Conversely, high
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risk (HR) lesions require surgical excision with 4–5 mm 
margins or Mohs micrographic surgery.

Risk classification of BCC remains challenging 
because aggressive histologic subtypes can present with 
deceptively benign clinical features, biopsy sampling may 
miss focal areas of HR pathology, and both dermatoscopy 
and imaging have inherent diagnostic limitations. Moreover, 
current classification systems are not fully harmonized, 
and significant interobserver variability across clinical, 
dermatoscopic, and histopathologic assessments further 
complicates accurate risk stratification [6]. Patient-specific 
factors such as immunosuppression, prior treatments, and 
lesion recurrence add an additional layer of complexity [7]. 
No molecular biomarker is currently available to reliably 
assess recurrence risk or disease aggressiveness.

These diagnostic constraints highlight the need for 
objective, molecularly driven markers to refine existing 
risk-stratification approaches. In this context, serum 
metabolomics offers a non-invasive window into tumor-
related biochemical alterations and represents a promising 
strategy to uncover molecular signatures associated with 
BCC recurrence risk [8]. 

However, the evidence characterizing the blood 
metabolomic profile of BCC remains scarce. Indeed, 
most serum metabolomics studies to date have focused 
on melanoma [9–13], and the current metabolomics 
literature in BCC is limited and relies largely on indirect, 
experimental, or tissue-based approaches. One recent study 
employed MALDI mass spectrometry imaging combined 
with machine learning and reported high diagnostic 
accuracy for BCC; however, the analysis was conducted 
on a small number of experimentally induced tumors in a 
murine model and was restricted to tissue-level metabolic 
profiling, thereby limiting its translational relevance for 
non-invasive risk stratification in humans [14].

Similarly, available human studies remain 
constrained by tissue-based designs and small sample 
sizes. Electroporation-based biopsy coupled with high-
throughput lipidomics has been shown to differentiate 
BCC from healthy skin and squamous cell carcinoma, but 
this approach requires direct tissue sampling, includes a 
limited number of patients, and does not assess circulating 
metabolites, precluding its application to non-invasive risk 
stratification or systemic biomarker discovery [15].

Large-scale human data addressing circulating 
metabolites in BCC are also limited by indirect inference 
frameworks. A recent Mendelian randomization study 
explored genetic associations between circulating 
metabolites, immune parameters, and skin cancer risk; 
however, the analysis relied on genetically inferred 
metabolite traits derived from GWAS data rather than direct 
experimental metabolomic profiling of patient samples, 
and it did not enable discrimination between HR and LR 
BCC lesions at the individual level [16].

Collectively, these studies highlight the paucity of 

data directly addressing serum metabolomic differences 
between clinically defined LR and HR BCC. This gap 
underscores the need for exploratory, proof-of-concept 
investigations based on direct serum metabolomic profiling 
to evaluate whether circulating metabolic signatures reflect 
BCC risk stratification. To address this gap, we conducted 
an untargeted analysis using high-performance liquid 
chromatography coupled with mass spectrometry (LC-MS).

Our study pursued two main objectives. First, we 
aimed to determine whether LR and HR BCC exhibit 
distinct circulating metabolic profiles. Second, once 
metabolic differences were identified, we examined which 
factors were most closely associated with these differences, 
including tumor size, anatomical site and histologic 
subtype.

By uncovering serum metabolomic profiles that 
differentiate LR and HR BCC, this exploratory study 
provides objective preliminary insights. These findings 
lay the groundwork for more accurate risk stratification 
and may ultimately support more individualized treatment 
decisions.

Methods
Consecutive participants were recruited from the 

Department of Dermatology at the County Emergency 
Clinical Hospital Cluj-Napoca in Cluj-Napoca, Romania, 
between February 2023 and September 2024. Individuals 
were eligible if a clinical and dermatoscopic assessment 
suggested the presence of skin cancer. Patients with a 
prior history of malignancy were excluded from the study. 
All examinations were performed by dermatologists with 
more than ten years of clinical experience. Peripheral 
blood was collected from each participant, and serum 
was prepared following the laboratory’s standard 
procedures. Ethical approval was obtained from the Iuliu 
Hațieganu University of Medicine and Pharmacy Cluj-
Napoca (approval no. 44/31.03.2023) and the County 
Emergency Clinical Hospital Cluj-Napoca (approval no. 
31186/5.07.2023). Written informed consent was collected 
from all participants. Excised tumors were processed as 
formalin-fixed, paraffin-embedded tissues and evaluated 
histologically with hematoxylin and eosin staining. A 
pathologist documented tumor size, histologic subtype, 
and grade when applicable, and only lesions confirmed as 
BCC were included in the subsequent analysis. The risk 
classification was based on the NCCN guidelines [5]. 

Metabolites were extracted by mixing 0.25 mL of 
serum with 1 mL of a methanol–acetonitrile solution (2:1, 
v/v). After vortexing for 30 seconds, samples were stored at 
−20 °C for 24 hours, then thawed and centrifuged at 12,500
g for 10 minutes. Supernatants were filtered through 0.2-
µm nylon membranes and transferred into autosampler
vials for analysis.

Metabolomic profiling was performed using a 
quadrupole time-of-flight mass spectrometer (MaXis 
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Impact) coupled to a liquid chromatography system 
(UltiMate 3000). Chromatographic separation employed 
a reversed-phase C18 column (Acclaim UPLC C18). The 
mobile phases consisted of 0.1% formic acid in water (A) 
and 0.1% formic acid in acetonitrile (B). A 15-minute 
gradient was applied at a flow rate of 0.8 mL/min, with 
a 5-µL injection volume and a column temperature of 28 
°C. The gradient progressed from 90% to 85% A (0–3 
min), 85% to 50% A (3–6 min), 50% to 30% A (6–8 min), 
30% to 10% A (8–12 min), followed by re-equilibration to 
90% A. Mass spectra were collected between 50 and 1000 
Da. The internal standard was a 0.5 mg/mL doxorubicin 
hydrochloride solution (parent ion m/z= 544.1360). In 
parallel QC samples were analyzed for reproducibility. All 
measurements were done in duplicate. Mass spectra were 
collected from m/z 50 to 1000, enabling detection of both 
polar (<380 Da) and hydrophobic (>380 Da) metabolites. 
Nebulizer pressure was set to 2.8 bar, with a drying gas 
flow of 12 L/min at 300 °C. Sodium formate was used for 
calibration prior to each run.

Raw LC–MS data were processed with DataAnalysis 
v4.2, including chromatogram alignment, conversion to 
base-peak chromatograms, and feature detection using the 
Find Molecular Features algorithm. Features with retention 
times below 0.3 minutes, signal intensities under 3000 
units, signal-to-noise ratios below 3, or m/z values above 
600 Da were excluded. Alignment of m/z features was 
performed using the NEAPOLIS platform (https://www.
bioinformatics.org/bioinfo-af-cnr/NEAPOLIS/).

Statistical analysis was carried out in R (version 
4.4.2) with the objective of identifying a concise panel 
of metabolites associated with HR lesions, thereby 
generating hypotheses regarding the potential feasibility 
of metabolomic approaches for risk stratification in 
BCC. Samples were included only if at least 70% of 
metabolite intensities were present, and metabolites were 
retained if missing values did not exceed 30% across 
samples. Intensities were log-transformed and autoscaled. 
Metabolites differing between HR and LR samples were 
identified using two-tailed Student’s t-tests. Significance 
required P < 0.01 and an absolute fold change greater 
than 1.2. Given the exploratory nature of the analysis, no 
adjustment for multiple testing was applied, as the goal was 
to rank metabolites according to their ability to discriminate 
between HR and LR lesions. The numerical imbalance 
between groups was not corrected for, as it arose from the 
consecutive inclusion of patients. Global variability was 
examined via principal component analysis (PCA) using 
prcomp() function from the stats v. 4.4.2 package, after 
median imputation of missing values and standardization 
to unit variance.

To evaluate discriminative performance, linear 
discriminant analysis was applied to PCA scores derived 
from significant metabolites. Linear discriminant analysis 
was performed with the MASS package (version 7.3-

61), using the smallest number of principal components 
accounting for at least 80% of cumulative variance. 
Posterior probabilities generated by the model were used 
to assign HR vs LR classifications. Given the limited 
sample size, leave-one-out cross-validation was used, as 
external validation in an independent hold-out cohort was 
not feasible. Confusion matrices were derived from cross-
validated predictions, and ROC curves with corresponding 
AUC values were computed using the pROC package 
(version 1.19.0.1). To generate hypotheses concerning 
the molecular origin of the observed metabolomic 
changes, pathway enrichment analysis was carried out in 
MetaboAnalyst 6.0 using the SMPDB reference library.

Results
Out of the 48 patients included in the study, 38 

lesions were HR BCC, while 10 proved to be LR BCC. 
The subgroup analysis of tumor dimension, location and 
histologic type is depicted in Table I.

Table I. Distribution of patients classified as high-risk and low-
risk basal cell carcinoma (BCC) according to NCCN criteria with 
subgroup analysis of risk considering tumor dimension, tumor 
location and histologic subtype.

Low risk BCC High risk BCC
NCCN guideline 10 38
Dimension (>2cm) 9 38
Location 12 35
Histology 40 8

In regard to the first aim, we were interested in 
delineating the metabolomic profile of HR BCC. After 
retaining only metabolites detected in at least 70% of 
samples, the dataset comprised 99 polar and 54 lipophilic 
compounds (Figure 1A). Using the defined significance 
thresholds (Student’s t-test P < 0.01 and absolute fold 
change > 1.2), the volcano plot revealed 10 metabolites that 
differed significantly between HR and LR BCC (Figure 1B 
and table II). 

Table II. The 10 discriminatory metabolites grouped as polar or 
lipophilic compounds.
Compound Classification
Dihydroxybutyric acid Polar
Tetradecanoylcarnitine Polar
Adenosine monophosphate Polar
Androsterone Lipophilic
Deoxycholic acid Lipophilic
Glucosylsphingosine Lipophilic
Lysophosphatidylcholine (18:3) Lipophilic
Lysophosphatidylcholine (18:1) Lipophilic
Lysophosphatidylcholine (20:4) Lipophilic
Lysophosphatidylcholine (22:5) Lipophilic
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Next, PCA was performed using only the 
metabolites that were significantly different in the 
volcano plot. The PCA score plot in figure 1C shows the 
distribution of samples along principal component 2 and 
3. The two risk groups occupy overlapping but partially
distinct areas of the plot. The separation was primarily
influenced by principal component 2, which showed strong

positive loadings for dihydroxybutyric acid and negative 
loadings for glucosylsphingosine. Principal component 
3 was mainly shaped by positive contributions from 
androsterone and lysophosphatidylcholine (20:4), whereas 
lysophosphatidylcholine (22:5), lysophosphatidylcholine 
(18:3), and adenosine monophosphate contributed 
negatively.

Figure 1. Serum metabolomic differences between low-risk and high-risk basal cell carcinoma. 
(A) Heatmap of polar metabolites and lipid species across low-risk and high-risk samples, shown as log-transformed intensities with
hierarchical clustering of both metabolites and samples.
(B) Volcano plot displaying fold changes and significance values for all detected metabolites. Features that passed the significance
threshold are highlighted.
(C) PCA score plot based on significantly different metabolites, showing sample distribution along PC2 and PC3.
(D) Loading plot indicating the metabolites that contributed most to principal component 2 (PC2) and PC3.
(E) ROC curve for the principal component analysis coupled with linear discriminant analysis (PCA-LDA) classification model
constructed from the significantly different metabolites.
(F) Confusion matrix for the PCA-LDA model, showing predicted and true classifications for low-risk and high-risk cases.
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We used the first four principal components, which 
together accounted for more than 80% of the total variance in 
the dataset, as input for a linear discriminant analysis model. 
The model yielded an AUC of 0.88 (Figure 1E), while the 
confusion matrix corresponded to a sensitivity of 89% and a 
specificity of 40% in detecting HR BCC (Figure 1F).

After defining the metabolic differences between LR 
and HR lesions, we proceeded to perform an exploratory 
pathway enrichment analysis and to determine whether 
clinical variables such as tumor size, anatomical location, 
or histologic subtype contributed to the observed patterns. 
The enrichment analysis using the SMPDB library indicated 
that the selected metabolites span several chemical 

classes, including carboxylic acids and their derivatives, 
steroids and steroid derivatives, glycerophospholipids, 
indole compounds, diazines, and various organooxygen 
metabolites (Figure 1A, B).

To determine which clinical features contributed 
to the observed metabolic differences, we next evaluated 
the relationship between the discriminant metabolites and 
tumor size, anatomical location, and histologic subtype. 
No meaningful differences were observed across histologic 
risk classes (Figure 2C). In contrast, several metabolites 
differed significantly between lesions arising in HR and 
LR anatomical sites. Tumor size also showed a notable 
influence, indicating that lesion dimension is associated 
with distinct metabolic profiles.

Figure 2. Functional classification of differential metabolites and their associations with tumor features.
(A) Enrichment analysis of the chemical classes represented by the differential metabolites.
(B) Proportional distribution of these metabolites across major chemical categories.
(C) Boxplots showing metabolite levels in relation to histologic subtype, anatomical location and tumor dimension. P-values for each
comparison are shown above the corresponding panels.
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Discussion
This study addressed two main objectives. First, 

we evaluated whether LR and HR BCC differ in their 
circulating metabolic profiles. Second, after identifying 
discriminant metabolites, we examined their biological 
relevance and assessed whether tumor size, anatomical 
location, or histologic subtype contributed to the observed 
variation.

Regarding the first objective, the results 
demonstrate clear metabolic differences between LR and 
HR BCC. After filtering, the dataset contained 99 polar and 
54 lipophilic metabolites, of which 10 met the predefined 
significance thresholds (P < 0.01 and absolute fold change 
> 1.2). These metabolites span multiple biochemical
classes, indicating broad metabolic differences between
LR and HR BCC rather than a single pathway shift. The
linear discriminant analysis model based on the first 4
principal components reached an AUC of 0.88, with a
sensitivity of 89% and a specificity of 40% for detecting
HR BCC, supporting the discriminatory potential of these
metabolic features.

For the second objective, we used enrichment 
analysis to explore the origin of the observed metabolomic 
differences between HR and LR BCC. The results 
showed that the discriminant metabolites represented 
several chemical categories, including carboxylic acids, 
steroids, glycerophospholipids, indoles, diazines, and 
organooxygen compounds. The relatively limited number 
of samples and metabolites did not allow for an in-depth 
analysis of metabolic pathways potentially deregulated in 
HR BCC, and therefore, mechanistic links between the 
identified metabolites and tumor aggressiveness remain 
speculative.

When metabolite intensities were examined across 
clinical variables, histologic risk classes showed no 
meaningful differences. In contrast, several metabolites 
differed significantly between lesions arising in LR versus 
HR anatomical sites. Tumor size also contributed to 
metabolic variation, with multiple metabolites showing 
distinct patterns between smaller and larger tumors. These 
findings suggest that metabolic differences between LR 
and HR BCC reflect both intrinsic tumor characteristics 
and clinically relevant contextual factors such as location 
and dimension.

To date, most serum metabolomics research in skin 
cancer has focused on melanoma rather than BCC. Several 
studies have evaluated metabolite-based diagnostic 
signatures in melanoma, including large-scale analyses 
that identified amino sugar–related metabolites, lipid 
species, and carnitine derivatives as robust discriminators 
between melanoma and healthy controls [9,10,12,13]. 
Beyond diagnosis, a recent metabolomics study in 
metastatic melanoma demonstrated that baseline serum 
metabolites can stratify patients according to overall 
survival under immune checkpoint inhibitor therapy, 

highlighting the potential of metabolomics for prognostic 
assessment [11]. In contrast, data on metabolomics-
based risk stratification in BCC are extremely limited, 
and no prior study has specifically examined circulating 
metabolic profiles in relation to LR versus HR BCC. 

Notably, several metabolite classes identified in 
our cohort, including lysophosphatidylcholines, steroid-
related compounds, and lipid-associated metabolites, 
overlap with metabolic patterns previously described in 
tissue-based analyses of BCC [14,15]. This convergence 
suggests that at least part of the tumor-associated 
metabolic reprogramming is reflected systemically, rather 
than being restricted to the local tumor microenvironment. 
At the same time, the detection of circulating metabolites 
such as dihydroxybutyric acid and glucosylsphingosine 
highlights additional metabolic alterations that would not 
be captured by tissue-restricted approaches. 

Compared with prior work relying on MALDI 
imaging or electroporation-based lipidomics, which 
primarily characterize local biochemical changes within 
tumor tissue, the present study provides complementary 
information by capturing systemic metabolic differences 
associated with clinical risk stratification [14,15]. 
Furthermore, unlike genetic or Mendelian randomization 
studies, which infer metabolic involvement indirectly 
[16], our approach directly measures circulating 
metabolites and therefore reflects real-time biochemical 
alterations associated with tumor behavior. Therefore, 
our findings expand current knowledge by providing 
evidence that serum metabolomics may capture clinically 
relevant risk distinctions in BCC. Several limitations 
should be considered when interpreting the findings of 
this study. First, the sample size was modest, particularly 
for the LR group, which included fewer cases than the 
HR group. This imbalance may have reduced the power 
to detect subtler metabolic differences and contributed to 
the partial overlap observed in PCA. Second, the study 
was conducted at a single clinical center, which may limit 
the generalizability of the metabolic patterns identified. 
External validation in independent cohorts with broader 
demographic and geographic diversity will be necessary 
to confirm the robustness of the findings. Third, although 
the untargeted LC-MS approach enabled broad detection 
of serum metabolites, it did not provide absolute 
quantification, and certain metabolite classes, such as 
highly hydrophobic lipids or low-abundance compounds, 
may be underrepresented. Finally, mechanistic 
associations between the identified metabolites and BCC 
aggressiveness remain speculative, as the relatively 
small number of patients and metabolites did not permit 
a detailed pathway enrichment analysis. Despite these 
constraints, the study offers initial evidence that serum 
metabolomics can differentiate LR from HR BCC and 
supports further exploration of metabolic markers for risk 
stratification in BCC.
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Conclusion
In summary, this study shows that LR and HR BCC 

have distinct circulating metabolic profiles detectable by 
untargeted serum LC-MS. We identified 10 metabolites 
that differed between the two groups, and multivariate 
modeling produced an AUC of 0.88, indicating that serum 
metabolites reflect clinically relevant differences in BCC 
risk. The discriminant metabolites belonged to multiple 
biochemical classes, and their variation was influenced 
mainly by anatomical site and tumor size rather than 
histologic subtype. Although validation in larger and more 
diverse cohorts is required, these results provide initial 
evidence that serum metabolomics may complement 
current clinical criteria and support more accurate risk 
stratification in BCC.
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