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Abstract

Collagen mineralization (CM) is a challenging process that has received a lot 
of attention in the past years. Among the reasons for this interest, the key role is the 
importance of collagen and hydroxyapatite in natural bone, as major constituents. 
Different protocols of mineralization have been developed, specially using simulated 
body fluid (SBF) and many methods have been used to characterize the systems 
obtained, starting with methods of determining the mineral content (XRD, FTIR, 
Raman, High-Resolution Spectral Ultrasound Imaging), continuing with imaging 
methods (AFM, TEM, SEM, Fluorescence Microscopy), thermal analysis (DSC and 
TGA), evaluation of the mechanical and biological properties, including statistical 
methods and molecular modeling. In spite of the great number of studies regarding 
collagen mineralization, its mechanism, both in vivo and in vitro, is not completely 
understood. Some of the methods used in vitro and investigation methods are reviewed 
here.
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[10] and its reconstruction has great importance in treating 
different orthopedic diseases including cancer. Bone is the 
main structure to support the body and protect internal 
organs in vertebrates [1,11], and also it is important in 
maintaining the concentration of inorganic ions (Ca2+, PO4

3-

) through continuous resorption and remodeling [2,12].
In bone, mineralized collagen usually contains 

calcium phosphate based crystals, having as principal 
components Ca2+ and PO4

3- (phosphate) ions, but also small 
amounts of other cations, such as Mg2+, and anions: CO3

2- 
(carbonate), OH- (hydroxyl), Cl- (chloride), F- (fluoride), 
citrate and other [13]. These calcium phosphate phases 

Introduction
Research on in vitro mineralization of self assembled 

collagen fibrils is a largely approached dynamic domain, 
since there is great interest in bone grafts based on this kind 
of composite materials. 

The name bone designates a family of natural 
materials, nanocomposites presenting a multi-level 
complex hierarchical structure based on mineralized 
collagen fibrils [1-2].

Collagen is a complex protein having a repetitive 
sequence of amino-acids, in particular: glycine, proline and 
hydroxyproline (Fig. 1). More than 20 types of collagen 
have been identified until now, but collagen type I and 
collagen III are the most abundant in nature [3-6]. Collagen 
can be found in different parts of the human body, such as: 
cornea, skin, tendon, cartilage, and bone [7]. Collagen type 
I is the most abundant protein in the natural bone [8-9].

Bone is one of the most perfect natural structures 

Figure 1. Chemical structures of the collagen main constituents:
proline, hydroxyproline and glycine.
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implied in the mineralization of collagen fibrils are similar 
to hydroxyapatite (HAP) [14].

Bone contains, in principal, 3 types of components, 
namely: inorganic materials (65-70%, especially 
hydroxyapatite, HAP, which confers hardness), organic 
mass (20-25%): collagen type I, predominantly, which 
offers the elasticity necessary for movement and small 
quantities of osteonectin and osteoclacin that lead to 
the regeneration of the bone), and water associated with 
collagen (10%) [12,15].

But composition alone does not account for 
the outstanding mechanical properties (strength and 
toughness) of bone, which are essentially determined by its 
nanostructure, organized on seven levels of hierarchy [1,16-
17]. In all bone materials, there is the same basic building 
block: a collagen fibril, with HAP crystals (platelets), with 
their c-axes [0 0 1] aligned preferentially parallel to long 
axis of the fibril. These fibrils were beforehand arranged by 
self assembly in a matrix presenting a periodic array of hole 
and overlap zones [17]. HAP crystals probably nucleate in 
the hole zones, but outgrow them and are stored between 
tropo-collagen molecules (triple helices of collagen 
peptides), thus generating an interpenetrating organic–
inorganic nanocomposite [18]. Due to the metastability of 
the extremely small HAP nanocrystals, they can be resorbed 
by osteoclasts during the natural remodeling processes of 
the bone [19]. Afterwards these mineralized fibrils self-
assemble further into higher levels of structure, for instance 
in parallel arrays that rotate across the concentric lamellae 
of osteons [1,20] with further hierarchy directed by 
osteoblasts as they lay down a trabecular and cortical bone 
macrostructure [12]. As a particular case, mature enamel 
- the hardest tissue in the body – contains 95% apatitic 
mineral, 4% water and less than 1% of organic matrix [16].

In the natural bone, mineralization of collagen 
is the result of complex biological processes {see, for 
example [7,21-22]} in which deposition of inorganic 
salts is induced by a template of collagen network formed 
through self-assembly [23]. It was -intensively studied 
over the last 50 years, but the exact molecular mechanism 
of mineralization of bone collagen is not completely 
elucidated till now [23-24]. Since type I collagen by itself 
cannot induce apatite nucleation [25], non-collagenous 
proteins such as osteonectin and osteocalcin [26] contribute 
to the stabilization of amorphous calcium phosphate phases 
as nanoprecursors (sequestration motif) [27-28], and to 
the initiation of nucleation and hierarchical assembly of 
apatite within the collagen scaffold (templating motif) [29]. 
The present review will present only in vitro methods for 
collagen mineralization.

Different ways of preparing mineralized 
collagen

At present there is an increasing demand for 
improved bone graft substitutes in order to mimic the 

properties of natural bone, a great number of organic/
inorganic composites have been proposed.

Three-dimensional scaffolds are used in tissue 
engineering for cell cultures, to form a mature matrix for 
implantation into the body [30]. The scaffold is the initial 
support for the cells, and it has an important effect on 
cell processes (proliferation, migration, etc) [31]. It must 
have a series of characteristics such as: high porosity, 
mechanical stability, biocompatibility and biodegradability 
[15]. Mostly collagen and hydroxyapatite have been 
considered as scaffold materials for bone tissue culture for 
regeneration.

As shown above, fibrous type I collagen is 
chemically and structurally similar to natural extracellular 
matrices [33], and it is combined in bone with (carbonated) 
hydroxyapatite in a hierarchically organized biocomposite 
tissue, from nano to macroscopic scale [1]. It is commonly 
used as a biomaterial in scaffolds, due to its stability, 
bioactivity and biocompatibility. Collagen gels support 
cellular proliferation and osteogenic differentiation in a 
three-dimensional matrix [34]. Bovine tissues are the main 
commercial source of collagen, but also other sources 
were considered, especially after Bovine Spongiform 
Encephalopathy became a major concern. For instance, 
collagen-rich fish solid waste was taken in consideration as 
an alternative source [35].

Simple collagen scaffolds and constructs could be 
used in bone implants without mineralization, but they 
would need more then 2-3 weeks for osteointegration 
[36]. This is why as a rule composites of collagen and 
HAP are used [37], but also other inorganic materials were 
considered, such as silica. The mineralization process 
improves the mechanical resistance of collagen and makes 
it a suitable matrix for bone repair [38].

Such mineralized matrices are a valuable biomedical 
tool for regulating diverse phenotypic activities of stem 
and progenitor cells in the repair and regeneration of bone 
tissues [39-40], but are also useful in the study of bone 
diseases, e.g. osteoporosis or cancer metastasis [41].

Early bone grafts used to be based on highly 
crystalline sintered HAP, but this material is not readily 
resorbed by the body, so now research is focused on 
composites based on amorphous HAP [10]. 

Among the methods of preparing mineralized 
collagen, we can distinguish [12,15]: 

• the direct blending of collagen and mineral 
crystals, i.e. simply mixing together collagen and mineral 
nanoparticles;

• the co-precipitation of mineral during collagen 
fibrillogenesis;

• the ‘‘biomimetic’’ approach of immersion of 
collagen scaffolds in simulated body fluid, SBF [7] to coat 
the collagen scaffold surfaces with minerals.

SBF is also used for the direct surface modification 
of metallic and other implants The classical Kokubo 
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solution formulated with ion concentrations similar to 
blood plasma [42] has the following ionic composition 
(mmol/L): Na+ 142.0; K+ 5.0; Mg2+ 1.5; Ca2+ 2.5; Cl- 
147.8; HCO3

- 4.2; HPO4
2- 1.0; SO4

2- 0.5. As a precursor 
for the collagen mineralization, it is prepared by mixing 
in ultrapure water the following solutions: NaCl, NaHCO3, 
KCl, K2HPO4·3H2O, MgCl2·6H2O, CaCl2, and Na2SO4, 
adjusted to physiological pH (7.4) [23].

The enrichment of SBF with transition metal ions 
was also proposed [23]. Ions of this kind (Co2+ ,Ni2+ , Zn2+ 
,Fe3+ ,Mn2+ ,Cu2+) used to dope HAP, play an important role 
as trace elements for the growth and metabolism of bone 
tissues, in preventing and treating bone diseases.

The co-precipitation method to obtain collagen/
calcium phosphate composites implies the self assembly of 
collagen fibrils from soluble molecules and the precipitation 
of calcium phosphate (mostly HAP) in aqueous solution 
[43-45]. For instance, a basic solution containing Ca2+ was 
added drop-wise to a solution containing dissolved type I 
collagen in phosphoric acid. The self assembly of collagen 
takes place simultaneously with the precipitation of HAP 
at pH 9-10, giving their nanocomposite [44,46]. Instead 
of collagen, gelatin – its denaturated form – was also used 
[47]. Such materials present a rather good bioactivity, 
but have poor mechanical properties, which limit their 
applications [48].

The most commonly used surface mineralization 
techniques [10] include soaking the scaffold in (SBF) [49-
50] and the alternating dipping method [51], the last being 
faster (hours instead of days duration). But it is difficult 
for the solution to reach the interior of the nanofibrous 
block. An in situ diffusion method [52] tries to obtain 
collagen/nanoHAP scaffolds with a concentration gradient, 
from solutions containing Ca2+ and PO4

3- ions, which 
precipitate HAP crystallites on the collagen fibrils. In order 
to control the ionic diffusion during the mineralization 
process, a dual membrane diffusion system was proposed, 
with a cation-selective membrane and an anion-selective 
dialysis membrane and a carboxymethylated collagen fibril 
substrate [53]. 

Mineralization of scaffolds induced by incubating 
collagen matrices in SBF or by activation of calcium and 
phosphate secretion from cells loaded within the matrix 
[54] improves the bonding of the implants to the bone and 
the osteogenic differentiation of bone-forming stem and 
progenitor cells [40]. But such collagen gels encapsulating 
calcium-secreting cells lack rigidity and tend to shrink 
significantly. [40, 55].

Such conventional in vitro collagen mineralization 
methods, realized by the nucleation and growth technique, 
using a direct combination of reactant ions and/or various 
forms of simulated body fluid as the reaction media [56-60] 
cannot reproduce the native nanostructure of bone which 
arises from intrafibrillar mineralization. HAP crystals 
appear randomly oriented in spheritic clusters on the surface 

of the collagen scaffolds [17]. It is possible that the external 
mineral crust formed prevents further mineralization of the 
collagen fibrils beneath the surface [17,61].

Since these collagen-calcium phosphate composites 
have inadequate mechanical properties, in order to improve 
these characteristics synthetic polymers or agents for 
crosslinking are added. Among the polymers used to 
strengthen the mineralized collagen we can cite poly (lactic 
acid (PLA) [62] or the copolymer poly(lactic-co-glycolic 
acid) (PLGA) [40]. Some cross-linking agents used are 
glutaraldehyde [63-64], succinic anhydride, and acyl azide 
[65], 3-Aminopropyl triethoxysilane [36]. A disadvantage 
of these agents is their cytotoxic properties.

Of course, there is also the possibility to apply 
collagen/ calcium phosphate composite coatings on the 
surface of metallic implants; so we obtain a bioactive 
surface together with the high mechanical characteristics 
of the metal core [66]. To this aim, the use of electrolysis 
proved to be useful for collagen self-assembly and calcium 
phosphate mineralization [48]. Electrochemical processes 
are also implied in the electro-deposition of hydroxyapatite 
on collagen [67], or in the electrochemically assisted 
deposition of coatings from a Ca2+/HxPO4

(3-x) electrolyte at 
physiological pH and temperature [68].

The methods using SBF are often named 
“biomimetic”, but as a matter of fact, they do not accurately 
mimic the in vivo bone formation process, particularly 
intrafibrillar mineralization, and often result in scaffolds 
that are not suitable for bone tissue engineering. 

A fundamental breakthrough in mimicking 
intrafibrillar mineralization was reached by the method of 
the polymer-induced liquid precursor (PILP) process [69-
70]. The addition of acidic polypeptides to the mineralization 
solution induces or stabilizes an amorphous highly hydrated 
precursor to the mineral (HAP), with a liquid-like character. 
This process could even explain the biological biomineral 
morphogenesis in vertebrates and invertebrates [71]. By 
this process, intrafibrillar mineralization of collagen can be 
realized in vitro: the HAP nanocrystals are embedded and [0 
0 1] aligned within collagen fibrils, as in the nanostructure 
of natural bone [71-73]. The acidic polypeptides mimick the 
role of the noncollagenous proteins such as osteonectin and 
osteocalcin in the natural process, and permit intrafibrillar 
mineralization [71,74-77].

The mineralization by the PILP process of individual 
collagen fibrils were studied and the products were 
characterized [71,75,77]. The randomly oriented bundles 
of fibrils in the form of porous collagen scaffolds were also 
investigated [17,71,77,78-79].

In one of the approaches, polyaspartate was used 
to mimic the acidic non-collagenous proteins involved in 
bone formation, and alkaline phosphatase to provide a slow 
release of inorganic phosphate ions from a phosphate ester 
[17]. Polyaspartic acid, together with K2HPO4 and CaCl2 
were used in a perfusion-flow (dynamic) mineralization 
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technique, to obtain a collagen-HAP composite with 
structure and compositions similar to human trabecular 
bone [15]. Recently, osteopontin was used in such a 
process, and was shown to modulate both the mineralization 
reaction, and the cellular activity [80]. Polyacrylic acid 
was also used as sequestration analogue (to stabilize 
amorphous calcium phosphate into nanoprecursors) along 
with poly vinyl phosphoric acid (as substitute for matrix 
phosphoproteins), as templating analogue (to direct the 
nucleation and growth of apatite within collagen fibrils) for 
the remineralization in SBF of dentine collagen [21]. Small 
inorganic poly-phosphates (sodium trimetaphosphate and 
sodium tripolyphosphate) could also be used as templating 
analogues [22]. The role of phosphoproteins in the 
mineralization process was discussed [81].

Besides calcium phosphates, silica was used as an 
alternative in the mineralization of collagen, both because 
of the mechanical properties of the resulted innovative 
biomaterial, and for the stimulating effect of silicic acid in 
osteogenesis [82]. Composite from collagen and bioglass 
particles were prepared [33,83-84]. The same mineralization 
methods were used as for phosphates: silicification of 
previously assembled collagen fibrils [85], or simultaneous 
collagen fibrillogenesis and silica polymerization [86]. A 
silica/collagen/hydroxyapatite composite biomaterial was 
also obtained [14,87]. The modern method of intrafibrillar 
mineralization used for calcium phosphates was extended 
to biosilification [38].

Characterization of the mineralized collagen 
The principal methods used to characterize the 

mineralized collagen are summarized in Table I, along 
with a few references to their application. All of them can 
offer important views on the collagen behavior under the 

mineralization process and further perspectives on the 
mechanism involved.

The characterization of the mineralized collagen 
can be accomplished by using various techniques, most of 
the studies are using microscopy (SEM, TEM, AFM and 
fluorescence) to visualize the mineralized collagen fiber 
or spectroscopy (X-ray, FTIR, Raman, High-Resolution 
Spectral Ultrasound Imaging) to determine the chemical 
content of the samples and in vitro tests on cell cultures to 
see the interaction of the new material with the biological 
medium, but some other methods such as: determining the 
mechanical properties of the probes, analyzing the thermal 
behavior (DSC, TGA), or the absorption capacity and some 
molecular simulations of the interactions that may occur 
between collagen and the other components (specially 
hydroxyapatite) are mentioned.

Conclusions
Mineralizing the collagen is not an easy task; it can 

be accomplished under specific conditions and it depends 
on many parameters involved. A glimpse on the methods 
used to this aim evidences a continuous trend toward the 
development of biomimetic methods, in order to approach 
in vitro the natural processes of osteogenesis and to obtain 
materials presenting characteristics near to the ideal of 
natural bone. The degree of success can be estimated using 
a large variety of up to date investigation techniques and 
data processing methods.
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Method Reference
Morphological characterization:
Scanning Electron Microscopy (SEM) [12,15,23,33,36,40,48,53,68,78,80,88-96]
Transmission Electron Microscopy (TEM) [12,16,21-22,24,48,53,78,89,95,97-100] 
Atomic Force Microscopy (AFM) [68,96,98] 
Fluorescence Microscopy [33,53,101] 
Mineral content:
X-ray Diffraction (XRD) [12,15,23,33,36,40,74,80,88-90,93,95,102-103] 
Fourier transform infrared spectroscopy (FTIR) [21-23,33,36,48,68,87,89,91,94-95,97,102,105]
Raman Spectroscopy [33,74]
High-Resolution Spectral Ultrasound Imaging [55]
Mechanical properties:
Modulus of elasticity [15,33]
Biocompatibility:
Cell culture [15,33,35,50,80,95,97,100,102,106-116] 
Thermal analysis:
Differential Scanning Calorimetry (DSC) [36]
Thermogravimetric Analysis (TGA) [12,80]
Adsorption isotherms: [21]
Molecular modeling: [117,118]

Table I. Methods of characterization for mineralized collagen.
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